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Tracking Deforming Objects using Particle Filtering

for Geometric Active Contours

Yogesh Rathi, Namrata Vaswani, Allen Tannenbaum, Anthony Yezzi

Abstract

Tracking deforming objects involves estimating the global motion of the object and its local deformations

as a function of time. Tracking algorithms using Kalman filters or particle filters have been proposed for finite

dimensional representations of shape, but these are dependent on the chosen parametrization and cannot handle

changes in curve topology. Geometric active contours provide a framework which is parametrization independent

and allow for changes in topology. In the present work, we formulate a particle filtering algorithm in the geometric

active contour framework that can be used for tracking moving and deforming objects. To the best of our knowledge,

this is the first attempt to implement an approximate particle filtering algorithm for tracking on a (theoretically)

infinite dimensional state space.

Index Terms

Tracking, Particle Filters, Geometric Active Contours.

I. I NTRODUCTION

The problem of tracking moving and deforming objects has been a topic of substantial research in the

field of active vision; see [1], [2], [3] and the references therein. In this paper, we propose a scheme

which combines the advantages of particle filtering and geometric active contours realized via level set

models for tracking deformable objects.
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The possible parameterizations of shape are of course very important. Various finite dimensional

parameterizations of continuous curves have been proposed, perhaps most prominently the B-spline

representation used for a “snake model” as in [2]. Isard and Blake (see [1] and the references therein)

use the B-spline representation for contours of objects and propose the CONDENSATION algorithm [4]

which treats the affine group parameters as the state vector, learns a prior dynamical model for them and

uses a particle filter [5] to estimate them from the noisy observations. Since this approach only tracks

the affine parameters, it cannot handle local deformations of the deforming object. The approach in [2],

[6], [7] uses a Kalman filter in conjunction with active contours (using marker particle representation of

curves) to track nonrigid objects.

Another approach for representing contours is via the level set method [8], [9] where the contour is

represented as the zero level set of a higher dimensional function, usually the signed distance function [8],

[9]. For segmenting an object, an initial guess of the contour (represented using the level set function) is

deformed until it minimizes an image-based energy functional. Most level set methods track by segmenting

the object at each frame and do not utilize the temporal coherency of the deforming object. As a result,

such methods fail to track large changes in the spatial location (rigid motion) of the object. Some previous

work on tracking using level set methods is given in [10], [11], [12], [13], [14], [15], [16], [17], [18].

Most of these works formulate contour tracking as the problem of computing the MAP estimate of the

contour using a Bayesian formulation (with an image likelihood energy and a prior term). In [16], [14],

the prior is only a smoothness prior while in [10], it is a distance from a finite set of possible contour

exemplars. The work of [15] uses a shape energy term only when occlusion is detected. In [11], [17], the

object detection step at each time is separated from the tracking step. There is, of course, a huge literature

devoted to visual tracking, and thus the work sampled above is by no means exhaustive.

The work in this paper addresses the limitations of the CONDENSATION algorithm [1] and level set

based methods and extends on the ideas presented in [12], [13]. More precisely, in [12], the authors track

by performing a joint minimization over a group action (Euclidean or affine) and the contour at each

time step, which is computationally very intensive. Also, for nonlinear systems such as the one used in

[13], there is no systematic way to choose the observer matrix to guarantee stability. The present paper

addresses the above limitations. We formalize the incorporation of a prior system model along with an
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observation model. A particle filter is used to estimate the conditional probability distribution of the group

action and the contour at timet, conditioned on all observations up to timet. Thus, this work presents a

novel method to perform filtering on an infinite dimensional space of curves for the purpose of tracking

deforming objects. Finally, a conference version of this paper has appeared in [19].

Our contribution in this work is the following three modifications to the standard particle filter (PF)

[5], [20]: (i) We propose to use an importance sampling (IS) density [20] which can be understood as

an approximation to the optimal IS density when the optimal density is multi-modal. (ii) We replace

IS by deterministic assignment when the variance of the IS density is very small (happens when local

deformation is small).Because of this step, we are actually only sampling on the 6-dimensional space of

affine deformations, while approximating local deformation by the mode of its posterior. This is what makes

the proposed PF algorithm practically implementable in real time. The full space of contour deformations

is theoretically infinite. In practice, its dimension is between 200-300 even for the small sized images

shown in the results.(iii) In addition, we also discuss an efficient way to compute an approximation to

the mode of the posterior of local deformation. As explained in [21], these modifications are useful to

reduce computational complexity of any large dimensional state tracking problem.

This paper is organized as follows: In Section II, we provide a brief overview of the proposed algorithm

and in Section III we provide all the relevant details. Experimental results are given in Section IV, while

we conclude the paper with a summary and limitations in Section V.

II. T HE PROPOSEDALGORITHM

This section describes the overall framework of the proposed method with details given in the remainder

of the paper. LetCt denote the contour at timet (Ct is represented as the zero level set of a signed distance

function,φt(x), i.e.Ct = {x ∈ R2 : φt(x) = 0} [8]) andAt denote a 6-dimensional affine parameter vector

with the first 4 parameters representing rotation, skew and scale, respectively, and the last 2 parameters

representing translation. We propose to use the affine parameters (At) and the contour (Ct) as the state, i.e.

Xt = [At, Ct] and treat the image at timet as the observation, i.e.Yt = Image(t). Denote byY1:t all the

observations until timet. Particle filtering [5] allows for recursively estimatingp(Xt|Y1:t), the posterior

distribution of the state given the priorp(Xt−1|Y1:t−1). We will employ the basic theory of particle filtering
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here as described in [5]. The general idea behind the proposed algorithm is as follows:

• Importance Sampling: Predict the affine parametersAt (parameters governing the rigid motion of

the object) and perform importance sampling forCt to obtain local deformation in shape, i.e.,

• Generate samples{A(i)
t , µ

(i)
t }N

i=1 using:A(i)
t = fp(A

(i)
t−1, u

(i)
t ), µt

(i) = A
(i)
t (C

(i)
t−1) .

• PerformL steps of curve evolution on eachµ(i)
t

1:

C
(i)
t = fCE(µ

(i)
t , Yt, u

(i)
t,def ), u

(i)
t,def ∼ N (0, Σdef ) .

• Weighting and Resampling:Calculate the importance weights and normalize [5], i.e.,

w̃
(i)
t =

p(Yt|X(i)
t ) p(X

(i)
t |X(i)

t−1)

q(X
(i)
t |X(i)

t−1, Yt)
∝ e

−Eimage(Yt,C
(i)
t )

σ2
obs e

−d2(C
(i)
t ,µ

(i)
t )

σ2
d

N (fCE(µ
(i)
t , Yt), Σdef )

, w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

,

whered2 is any distance metric between shapes (see Section III-E) andEimage is any image based

energy functional (see Section III-C). Resample to generateN particles {A(i)
t , C

(i)
t } distributed

according top(At, Ct|Y1:t). The resampling step improves sampling efficiency by eliminating particles

with very low weights. We now explain in detail each of the steps above.

III. T HE SYSTEM AND OBSERVATION MODEL

The problem of tracking deforming objects can be separated into two parts [13]: a) Tracking the global

rigid motion of the object; b) Tracking local deformations in the shape of the object, which can be defined

as any departure from rigidity (non-affine deformations). The global motion (affine transformation) can

be modeled by the 6 parameters of an affine transformation,At, using a first order Markov process. We

assume that the local deformation from one frame to the next is small and can be modeled by deformation

in the shape of the contourCt. Thus, the state vector is given byXt = [At Ct]. The system dynamics

based on the above assumption can be written as:

At = fpAt−1 + ut, ut ∼ N (0, ΣA),

x̂ =




At,1 At,2

At,3 At,4


 x +




At,5

At,6


 , ∀x ∈ Ct−1, x̂ ∈ µt, i.e., µt

4
= At(Ct−1)

Ct = fdef (µt, ut,def ), ut,def ∼ N (0, Σdef )

(1)

1One can also performL steps of stochastic curve evolution as in [22]
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wherefp models global rigid motion of the object whilefdef is a function that models the local shape

deformation of the contour.

We further assume that the likelihood probability i.e., probability of the observationYt = Image(t) given

stateXt, is defined byp(Yt|Xt) = p(Yt|Ct) ∝ e
−Eimage(Ct,Yt)

σ2
obs , whereEimage is any image dependent energy

functional andσ2
obs is a parameter that determines the shape of the pdf (probability density function). The

normalization constant in the above definition has been ignored since it only affects the scale and not the

shape of the resulting pdf.

In general, it is not easy to predict the shape of the contour at timet (unless the shape deformations

are learneda-priori) given the previous state of the contour at timet−1, i.e., it is not easy to find a good

function fdef that can model the shape deformations and allows to sample from an infinite (theoretically)

dimensional space of curves. Thus, it is very difficult to draw samples forCt from the prior distribution.

This problem can be solved by doing importance sampling [23] and is one of the main motivations

for doing curve evolution as explained in the following sections. Thus, samples forAt can be obtained

by sampling fromN (fpAt−1, ΣA) while samples forCt are obtained using importance sampling, i.e., we

perform importance sampling only on part of the state space. This technique of using importance sampling

allows for obtaining samples forCt using the latest observation (image) at timet [24].

The central idea behind importance sampling [23] is as follows: Supposep(x) ∝ q(x) is a probability

density from which it is difficult to draw samples andq(x) is a density (proposal density or importance

density) which is easy to sample from, then, an approximation top(·) is given byp(x) ≈ ∑N
i=1 wiδ(x−xi),

where wi ∝ p(xi)
q(xi)

is the normalized weight of thei-th particle. So, if the samples,X(i)
t , were

drawn from an importance density,q(Xt|X1:t−1, Y1:t), and weighted byw(i)
t ∝ p(X

(i)
t |Y1:t)

q(X
(i)
t |X(i)

1:t−1,Y1:t)
, then

∑N
i=1 w

(i)
t δ(X

(i)
t −Xt) approximatesp(Xt|Y1:t).

In this work, the state is assumed to be a hidden Markov process, i.e.,p(Xt|X1:t−1) = p(Xt|Xt−1),

and we further assume that the observations are conditionally independent given the current state, i.e.,

p(Yt|X1:t) = p(Yt|Xt). Furthermore, if the importance sampling density is assumed to depend only on

the previous stateXt−1 and current observationYt, we getq(Xt|X1:t−1, Y1:t) = q(Xt|Xt−1, Yt). This gives

the following recursion for the weights [23]:w(i)
t = w

(i)
t−1

p(Yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

q(X
(i)
t |X(i)

t−1,Yt)
. The importance densityq(.)
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and the prior densityp(.) can now be written as2

q(Xt|Xt−1, Yt) = p(At|At−1) q(Ct|µt, Yt), p(Xt|Xt−1) = p(At|At−1) p(Ct|µt), (2)

where q(At|At−1) = p(At|At−1), since At is sampled fromp(At|At−1) = N (fpAt−1, ΣA). Thus, the

weights can be calculated from:

w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t ) p(C

(i)
t |µ(i)

t )

q(C
(i)
t |µ(i)

t , Yt)
. (3)

The probability p(Ct|µt) can be calculated using any suitable measure of similarity between shapes

(modulo a rigid transformation). One such measure is to takep(Ct|µt) ∝ e
−d2(Ct,µt)

σ2
d , whereσd is assumed

to be very small such that it satisfies the constraint of (10) in [21] andd2 is any metric on the space of

closed curves. In this work, we have used the distance measure given in section III-E.

A. Approximating the Optimal Importance Density

The choice of the importance density is a critical design issue for implementing a successful particle

filter. As described in [25], the proposal distributionq(·) should be such that particles generated by it, lie

in the regions of high observation likelihood. One way of doing this is to use a proposal density which

depends on the current observation [24]. In [25], the optimal importance density (one that minimizes

the variance of the weights conditioned onXt−1 and Yt) has been shown to bep(Xt|Xt−1, Yt). But in

many cases, it cannot be computed in closed form. For unimodal posteriors, it can be approximated by a

Gaussian with mean given by its mode [25], which is also equal to the mode ofp(Yt|Xt) p(Xt|Xt−1). In

our case, the distributionp(At|At−1) can be multi-modal, thus, the formulation of [25] cannot be directly

used. Hence we propose to use the following: SampleAt from the prior state transition kernel,p(At|At−1),

and find the mode ofp(Yt|Xt) p(Ct|µt) to obtain samples forCt. Notice that, for small deformations,

p(Yt|Xt) p(Ct|µt) is indeed unimodal [21]. Using (2) and the likelihood probabilityp(Yt|Xt) defined

before, finding the mode ofp(Yt|Xt) p(Ct|µt) is equivalent to finding the minimizer of

Etot(Ct, µt, Yt) =
Eimage(Ct, Yt)

σ2
obs

+
d2(Ct, µt)

σ2
d

.

2Note that the curve obtained after doing curve evolution is denoted byCt, while the curve obtained by applying the affine transformation

is denoted byµt, i.e., µt = At(Ct−1).
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Notice that from this energy point of view, it is clear why we can ignore the partition constants (in the

definition ofp(Yt|Ct) andp(Ct|µt)) which are needed to normalize the various densities so that they define

proper probability measures. Indeed, all we are interested in is the minimizer ofEtot. This observation

has also been made in various other works including [26], [27].

Finding the exact minimizer ofEtot for each particle at eacht is computationally expensive and hence

we use the following approximation: Assuming a small deformation betweent− 1 and t, both the terms

in this summation will be locally convex (in the neighborhood of the minimizers of both terms), and so

the minimizer of the sum will lie between the individual minimizers of each term. Thus, an approximate

solution to find the minimum ofEtot will be to start from the minimizer of one term and go a certain

distance (i.e., a certain number of iterations of gradient descent) towards the minimizer of the second. It

is easy to see thatC = µt minimizes the second term, and hence, starting withµt as the initial guess for

C, and performingL iterations of gradient descent will moveC a given distance towards the minimizer

of Eimage, whereL is chosen experimentally. We would like to reiterate here that the optimal choice of

L will be one that finds a curveC to minimizeEtot, but to avoid performing the complete minimization

of Etot, we are doing this approximation, and have found that it works well in practice.

Using the above technique, we are actually only sampling on the 6-dimensional space of affine

deformations, while approximating local deformation by the mode of its posterior.The full space of

contour deformations has dimension around 200-300 even for the size of images shown in the results.

Sampling on such a high-dimensional space for each particle cannot be done in anything close to real

time. However, the “mode tracker” method described above reduces the computations significantly.

B. Curve Evolution for computingCt

We now describe how to obtain samples forCt by doing gradient descent on the energy functional

Eimage. In what follows, this operation is represented by the functionfCE. The non-linear function

fCE(µ, Y, udef ) is evaluated as follows (fork = 1, 2, ..., L):

µ0 = µ, µk = µk−1 − αk∇µEimage(µ
k−1, Y, udef ), fCE(µ, Y, udef ) = µL . (4)

The above equation is basically a PDE which moves an initial guess of the contour so thatEimage is

minimized.udef ∼ N (0, Σdef ) is a noise vector that is added to the “velocity” of the deforming contour
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at each pointx ∈ µ (see [8], [9], [22] for details on how to evolve a contour using level set representation).

For practical examples with small deformations,Σdef is very small and in fact, even when one does not

add any noise tofCE, there is no noticeable change in performance. In numerical experiments, we have

not added any noise to the curve evolution process. Thus, the importance sampling density forAt is

p(At|At−1) while that for Ct is q(Ct|µt, Yt) = N (fCE(µt, Yt), Σdef → 0). The curveCt thus obtained

incorporates the prediction for global motion and local shape deformation.

1) An Alternative Interpretation forL-Iteration Gradient Descent:We perform onlyL iterations of

gradient descent since we do not want to evolve the curve until it reaches a minimum of the energy,

Eimage. Evolving to the local minimizer is not desirable since the minimizer would be independent of all

starting contours in its domain of attraction and would only depend on the observation,Yt. Thus the state

at time t would loose its dependence on the state at timet− 1 and this may cause loss of track in cases

where the observation is bad. In effect, choosingL to be too large (taking the curve very close to the

minimizer) can move all the samples too close to the current observation and thus result in reduction of

the variance of the samples leading to “sample degeneracy”. At the same time, ifL is chosen to be too

small, the particles will not be moved to the region of high observation likelihood and this can lead to

“sample impoverishment”. The choice ofL depends on how much one trusts the system model versus the

obtained measurements. Note that,L will of course also depend on the step-size of the gradient descent

algorithm as well as the type of PDE used in the curve evolution equation.

Figure 1 shows the histogram of the likelihood probability of the particles with and without using the

importance density. As can be seen, more particles are moved to the region of high likelihood if the

importance distributionq(·) is used.

Based on the above discussion, the importance weights in (3) can be calculated as follows:

w
(i)
t = w

(i)
t−1

p(Yt|X(i)
t ) p(C

(i)
t |µ(i)

t )

q(C
(i)
t |µ(i)

t , Yt)
∝ w

(i)
t−1

e
−Eimage(C

(i)
t ,Yt)

σ2
obs e

−d2(C
(i)
t ,µ

(i)
t )

σ2
d

N (fCE(µ
(i)
t , Yt), Σdef )

∝ w
(i)
t−1 exp

(
−Eimage(C

(i)
t , Yt)

σ2
obs

)
exp

(
−d2(C

(i)
t , µ

(i)
t )

σ2
d

)
,

(5)

where we have used the fact thatC
(i)
t is the mean andΣdef is very close to zero, implying that

N (C
(i)
t , Σdef → 0) can be approximated by a constant for all particles.
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C. Curve Evolution using Chan-Vese model

Many methods (see, e.g., [28], [10], [29], [30]) have been proposed which incorporate geometric and/or

photometric (color, texture, intensity) information in order to segment images robustly in presence of noise

and clutter. In our case, in the prediction step above,fCE can be any edge-based or region-based curve

evolution equation (one can use [10] or [16] to track textured objects). In this work, the Mumford-Shah

functional [31] as modelled by Chan and Vese is used [32] to obtain the curve evolution equation as

follows. One applies the calculus of variations to minimize the following energyEimage:

Eimage =

∫

Ω

(I − c1)
2H(Φ)dx dy +

∫

Ω

(I − c2)
2(1−H(Φ)) dx dy + ν

∫

Ω

|∇H(Φ)|dx dy , (6)

wherec1,c2 and the Heaviside functionH(Φ) are defined as

c1 =

∫
I(x, y)H(Φ)dx dy∫

H(Φ)dx dy
, c2 =

∫
I(x, y)(1−H(Φ))dx dy∫

(1−H(Φ))dx dy
,H(Φ) =





1 Φ ≥ 0 ,

0 else,

and finallyI(x, y) is the image andΦ is the level set function. The energyEimage can be minimized by

doing gradient descent via the following PDE [32], [31]:

∂Φ

∂τ
= δε(Φ)

[
ν div

( ∇Φ

|∇Φ|
)
− (I − c1)

2 + (I − c2)
2

]
, where δε(s) =

ε

π(ε2 + s2)
,

whereτ is the evolution time parameter and the contourC is the zero level set ofΦ (see [8], [9] for details).

We should specify that we have chosen the Chan-Vese functional because of ease of implementation, and

because it gave nice results on the image sequences to which it was applied. However, any geometric

curve evolution procedure for segmentation may be put into our particle filter framework.

D. Dealing with Multiple Objects

In principle, the CONDENSATION filter [1] could be used for tracking multiple objects. The posterior

distribution will be multi-modal with each mode corresponding to one object. However, in practice it is

very likely that a peak corresponding to the dominant likelihood value will increasingly dominate over all

other peaks when the estimation progresses over time. In other words, a dominant peak is established if

some objects obtain larger likelihood values more frequently. So, if the posterior is propagated with fixed

number of samples, eventually, all samples will be around the dominant peak. This problem becomes
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more pronounced in cases where the objects being tracked do not have similar photometric or geometric

properties. We deal with this issue as given in [33] by first finding the clusters within the state density

to construct a Voronoi tessalation [34] and then resampling within each Voronoi cell separately. Other

solutions proposed by [35], [36] could also be used for multiple object tracking.

E. Coping with Occlusions

A number of active contour models [30], [29], [37] which use shape information have been described

in the literature. Prior shape knowledge is necessary when dealing with occlusions. In particular, in [10],

the authors incorporate “shape energy” in the curve evolution equation to deal with occlusions. Any such

energy term can be used in the proposed model to deal with occlusions. In numerical experiments we have

dealt with this issue in a slightly different way by incorporating the shape information in the weighting

step instead of the curve evolution step, i.e., we calculate the likelihood probability for each particlei

using the corresponding image energyE
(i)
image (6) and a shape dissimilarity measured2 as follows:

p(Yt|X(i)
t ) ∝ λ1




e

−E
(i)
image

σ2
obs

∑N
j=1 e

−E
(j)
image

σ2
obs


 + λ2

(
1− d2(Φ(s), Φ(i))∑N

j=1 d2(Φ(s), Φ(j))

)
, (7)

where λ1 + λ2 = 1 and d2(Φ(s), Φ(i)) is the dissimilarity measure (modulo a rigid transformation) as

given in [37] by,d2(Φ(s), Φ(i)) =
∫
Ω
(Φ(s) − Φ(i))2 h(Φ(s))+h(Φ(i))

2
dx dy, with h(Φ) = H(Φ)R

Ω H(Φ) dx dy
, where

Φ(s) andΦ(i) are the level set functions of a template shape and thei-th contour shape, respectively. The

dissimilarity measure gives an estimate of how different two given shapes (in particular, their corresponding

level sets) may be. So, higher values ofd2 indicates more dissimilarity in shape. We use this strategy

for the following reason: In case of occlusion,Eimage will be higher for a contour that encloses the

desired region compared to a contour that excludes the occlusion (see the car example, Figure 3). Since

particle weights are a function ofEimage, the MAP estimate will be a particle that is not the desired

shape. However, using the weighting scheme proposed above, particles which are closer to the template

shape are more likely to be chosen than particles with “occluded shapes” (i.e., shapes which include the

occlusion). Of course, this formulation will only work if the object being tracked does not undergo large

deformations as is the case with other static shape based techniques [10], [29], [37].
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IV. EXPERIMENTS

In this section, we describe some experiments performed to test the proposed tracking algorithm. We

certainly do not claim that the method proposed in this paper is the best one for every image sequence

on which it was tested, but it did give very good results with a small number of particles on all of the

image sequences. We should add that to the best of our knowledge this is the first time geometric active

contours in a level set framework have been used in conjunction with the particle filter [5] for tracking

such deforming objects.

Results of applying the proposed method on four image sequences are given below. The model of Chan

and Vese [32], as described earlier, was used for curve evolution. In particular, choosingL (the number of

iterations of curve evolution) between 3 and 6 gave acceptable results. The level set implementation was

done using narrow band evolution [8]. Learning [1] was performed on images without the background

clutter, i.e. on the outlines of the object.

1) Van Sequence:In this video, we track a van moving amid clutter in the background. There is sudden

and large motion of the van (in some cases, the van moves more than 20 pixels between consecutive frames)

due to jitter in the camera motion. Furthermore, it gets largely occluded (only a small fraction of the van

is visible) many times by a building or a tree. Tracking such a sequence using active contours [32],

[10] alone is bound to fail since the van may lie outside the basin of attraction of the starting contour.

The standard CONDENSATION algorithm [1] may also get stuck on the strong edges of the building or

on other objects in the background, especially when the van gets occluded. As shown in Figure 2, the

proposed method tracks the van successfully despite large motion and occlusion. For this test sequence,

no motion model was learnt, i.e., the state transition was given byAt = At−1 + But whereut is white

Gaussian noise and B is a known covariance matrix which is assumed to be constant through the state

evolution process. Figure 2 shows tracking results with 50 particles.

2) Car Sequence:In this sequence, the car is partially occluded as it passes behind the lamp-post. It

is unclear if the standard CONDENSATION algorithm would be able to track the car through the entire

video, since the shape of the car (including the shadow) undergoes a change which is not affine. Notice

that the shadow of the car moves in a non-linear way from the side to the front of the car. On the other

hand, trying to track such a sequence using geometric active contours (for example, (7)) without any
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“shape energy” gives very poor results as shown in Figure 3. However, using the proposed method and

a weighting strategy as described in Section III-E the car can be successfully tracked (Figure 3). The

template shapeΦ(s) was obtained from the first frame of the sequence. Note that we used equation (7)

for the curve evolution which does not contain any shape term. A second-order autoregressive model was

used forfp. Results shown in this paper were obtained with 50 particles.

3) Couple Sequence:The walking couple sequence demonstrates multiple object tracking. In general,

tracking such a sequence by the standard CONDENSATION method [1] can give erroneous results when

the two pedestrians come very close to each other or touch each other, since the measurements made for

the person on the right can be interpreted by the algorithm as coming from the left. Our method naturally

avoids this problem since it uses “region based” energyEimage (6) and weighting as given in Section

III-E to find the observation probabilities. To track multiple objects, we used the method described in

Section III-D. Since the number of frames in the video is very small (only 22), no dynamical motion

model was needed to be learned. This video demonstrates the fact that the proposed algorithm can track

robustly (see Figure 4) even when the learnt model is completely absent. The number of particles required

in this case was 100. Another solution to tracking this sequence has been proposed in [35].

4) Plane Sequence:This sequence has a very low contrast and in general, it is very difficult to locate

the boundary of the plane. The motion of the plane from one frame to the other is also quite large, hence

traditional active contour based methods fail to track the plane. In this experiment, only translational

motion was assumed for the moving plane. No motion model was learned, and hence the state transition

equation was as described in the previous example. Figure 5 shows a few frames of the tracking results.

Even though, no scale parameter was included in the motion model, the contour deformation part of the

algorithm adjusts for this change in size of the plane (see the first and last frame). Other types of affine

changes in the shape are also taken care of within the proposed framework without having to explicitly

model them. Tracking results were obtained with just 30 particles. Figure 6 shows the results using the

standard CONDENSATION filter (with 1200 particles) assuming a Euclidean motion model. As is evident,

the filter fails to track in many frames, especially when the edges are weak. It also fails to adjust for

changes in scale. Our experiments show that increasing the number of particles to 2000 or more does

not change the results significantly. Tracking with 30 particles gives extremely bad results and the tracker
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Fig. 1. Likelihood probability distribution (a) with (b) without using importance densityq(.) for frame 2 of car sequence (200 particles).

Fig. 2. Tracking the van sequence

failed to track in roughly60 percent of the frames.

V. CONCLUSION AND L IMITATIONS

In this paper, we proposed a particle filtering algorithm for geometric active contours which can be

used for tracking moving and deforming objects. The proposed method can deal with partial occlusions

and can track robustly even in the absence of a learnt model. It also requires significantly fewer particles

than other tracking methods based on particle filters. Fast level set implementations [14] can be used to

achieve near real-time speeds.

The above framework has several limitations which we intend to overcome in our future work. First, we

have to include some kind of shape information when we track objects which undergo major occlusions.

This restricts our ability to track highly deformable objects in such situations. Secondly, the algorithm

Fig. 3. (Left to right): First 3 figures are tracking results using Chan-Vese [32]. Last 4 figures give tracking using the proposed method.

Fig. 4. Couple Sequence: Demonstrates multiple object tracking.
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Fig. 5. Plane Sequence: Tracking with 30 particles. Images have been cropped for better visualization.

Fig. 6. Plane Sequence: Tracking with Condensation filter using 1200 particles. Images have been cropped for better visualization.

might perform poorly if the object being tracked iscompletely occludedfor many frames.
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